
Nathan Schiff
Shanghai University of Finance and Economics

Graduate Urban Economics, Week 7
April 12, 2021
How do we measure preferences for local goods?

Use hedonic regressions, under assumption value is capitalized into housing prices

In many countries most important local good is school quality

\[
\ln(\text{price}_{ia}) = \alpha + X'_{ia}\beta + \gamma \ast \text{testScore}_a + \epsilon_{ia}
\]

where \(i \) is house and \(a \) is school attendance zone

What is problem with this approach? What is Black and Bayer et. al. strategy?
In a famous paper, Black (1999) shows that a border discontinuity approach can identify MWTP for school quality.

In US, children go to school based on location; the set of locations corresponding to one school are called “attendance zones.”

Basic idea of Black is to compare houses on both sides of attendance zone boundary—like RDD.

Uses boundary fixed effects *and* test scores to identify MWTP:

\[
\ln(\text{price}_{iab}) = \alpha + X'_{iab}\beta + K'\phi + \gamma * \text{testScore}_a + \epsilon_{iab}
\]

Control-based method: key assumption is that unobservable neighborhood characteristics correlated with test scores are same on each side of border.
Black 1999: streets and attendance districts

Figure I
Example of Data Collection for One City: Melrose Streets, and Attendance District Boundaries
Black 1999: block groups and attendance districts

Figure II
Example of Data Collection for One City: Melrose Census Block Groups and Attendance District Boundaries
Bayer, Ferreira, and McMillan, JPE 2007

BFM extend Black idea to estimate both 1) MWTP for school quality 2) MWTP for neighborhood demographics

BFM note that if demographics are still different along two sides of border (in narrow bands) then Black strategy leads to biased school quality coefficients

Two part paper:

First: estimate MWTP using hedonic regression

Estimate with very detailed, confidential, micro data of households (education, race, family structure) and houses (prices, rent, and housing), along with school characteristics and attendance zone boundaries in San Francisco area

Second: use structural model of location choice to adjust estimates to get average MWTP
Identification of MWTP for Demographics

An important question in the US is how much people value demographic characteristics of neighbors.

For example, if whites hold prejudice against blacks then they will pay less to live in a neighborhood with more blacks.

Another example: how much are people willing to pay to live with others of same education level?

Difficult questions to answer:

\[
\ln(price_{ij}) = \alpha + X'_{iab} \beta + \gamma \ast Demographic_j + \epsilon_{ij}
\]

Demographics may always be correlated with unobserved neighborhood quality.

How do BFM identify MWTP for demographics?
Using School Quality as Observable Source of Sorting

A key idea of BFM: school attendance zones cause demographic sorting; by controlling for observable school quality authors can control for unobservable neighborhood characteristics associated with demographics.

Ex: blacks in US have lower incomes and education on average than whites.

This may lead to more blacks on lower test score side of school attendance zone (within same district).

By comparing value of houses along both sides of attendance zone border, where lower side has more blacks, and controlling for test scores, difference in housing value can give MWTP for living with higher black population.

\[
\ln(\text{price}_{ij}) = \alpha + X'_{ij} \beta + K'_{b} \phi + \gamma_1 \ast \text{Demographic}_j + \gamma_2 \ast \text{testScore}_a + \epsilon_{ij}
\]
BFM 2007: Illustration of Border Discontinuity Design

Bayer Identification Strategy for Endogenous Demographics

\[\ln(\text{price}_{iabj}) = \phi_b + \text{race}_j + \text{test}_a + \epsilon_{iabj} \]
BFM 2007: Border Discontinuity Design

\[\ln(\text{price}_{iabj}) = \alpha + X'_{iab} \beta + K'_{b} \phi + \gamma_1 \ast \text{Demographic}_{ji} + \gamma_2 \ast \text{testScore}_a + \epsilon_{ij} \]

Key assumption: controlling for boundary fixed effects, test scores, and other area characteristics, demographic variables are no longer correlated with unobserved neighborhood characteristics affecting house values.

First authors present evidence showing there is sorting of demographics on either side of attendance zone boundary.

Then show how estimates of MWTP vary when include demographics and boundary fixed effects.

Find that MWTP for school quality declines significantly when including boundary FE; declines even more when controlling for demographics.

However, some demographics (% Black) are no longer significant when include boundary FE.
Fig. 1.—Test scores and house prices around the boundary. Each panel is constructed using the following procedure: (i) regress the variable in question on boundary fixed effects and on 0.02-mile band distance to the boundary dummy variables; (ii) plot the coefficients on these distance dummies. Thus a given point in each panel represents this conditional average at a given distance to the boundary, where negative distances indicate the low test score side.
Demographic sorting along boundary

Fig. 4.—Neighborhood sociodemographics around the boundary. Each panel is constructed using the following procedure: (i) regress the variable in question on boundary fixed effects and on 0.02-mile band distance to the boundary dummy variables; (ii) plot the coefficients on these distance dummies. Thus a given point in each panel represents this conditional average at a given distance to the boundary, where negative distances indicate the low test score side.

Doing so brings to light consequences for the boundary identification approach that have not been addressed in prior research. In particular, we show that controlling for neighborhood sociodemographics has a quantitatively significant effect on the school quality coefficient in hedonic price regressions, even when accounting for neighborhood unobservables. We also show that the negative correlation between house prices and neighborhood race widely reported in the literature is fully explained by the correlation between neighborhood race and unobserved neighborhood quality.

Our main estimating equation relates the price of house p to a vector of housing and neighborhood characteristics and a set of boundary fixed effects, v_{bh}, which equal one if house h is within a specified distance of boundary b and zero otherwise:

$$p = \frac{1}{H^{1/1001}} \frac{\beta^{H^{1/1001}}}{y}.$$

To maximize the sample size in our baseline analysis, we include both owner- and renter-occupied units in the same sample. To put these units on a comparable basis, we convert house values to a measure of monthly
MWTP Estimates

TABLE 3
Key Coefficients from Baseline Hedonic Price Regressions

<table>
<thead>
<tr>
<th>Sample</th>
<th>Within 0.20 Mile of Boundary (N = 27,548)</th>
<th>Within 0.10 Mile of Boundary (N = 15,122)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boundary fixed effects included</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>A. Excluding Neighborhood Sociodemographic Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Average test score (in standard deviations)</td>
<td>123.7 (13.2)</td>
<td>33.1 (7.6)</td>
</tr>
<tr>
<td>R^2</td>
<td>.54</td>
<td>.62</td>
</tr>
<tr>
<td>B. Including Neighborhood Sociodemographic Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Average test score (in standard deviations)</td>
<td>34.8 (8.1)</td>
<td>17.3 (5.9)</td>
</tr>
<tr>
<td>% census block group black</td>
<td>-99.8 (33.4)</td>
<td>1.5 (38.9)</td>
</tr>
<tr>
<td>% block group with college degree or more</td>
<td>220.1 (39.9)</td>
<td>89.9 (32.3)</td>
</tr>
<tr>
<td>Average block group income (/10,000)</td>
<td>60.0 (4.0)</td>
<td>45.0 (4.6)</td>
</tr>
<tr>
<td>R^2</td>
<td>.59</td>
<td>.64</td>
</tr>
</tbody>
</table>

Note.—All regressions shown in the table also include controls for whether the house is owner-occupied, the number of rooms, year built (1980s, 1960–79, pre-1960), elevation, population density, crime, and land use (% industrial, % residential, % commercial, % open space, % other) in 1-, 2-, and 3-mile rings around each location. The dependent variable is the monthly user cost of housing, which equals monthly rent for renter-occupied units and a monthly user cost for owner-occupied housing, calculated as described in the text. Standard errors corrected for clustering at the school level are reported in parentheses.
TABLE 4
Hedonic Price Regressions: Average Test Score, Alternative Samples
Sample: Within 0.20 Mile of Boundary

<table>
<thead>
<tr>
<th>Neighborhood Sociodemographics</th>
<th>Excluded</th>
<th>Included</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Boundary fixed effects included</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Baseline results (N = 27,548)</td>
<td>123.7</td>
<td>33.1</td>
</tr>
<tr>
<td></td>
<td>(13.2)</td>
<td>(7.6)</td>
</tr>
<tr>
<td>Schools versus immediate neighbors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Including school peer and teacher measures (N = 27,548)</td>
<td>95.0</td>
<td>32.1</td>
</tr>
<tr>
<td></td>
<td>(17.9)</td>
<td>(10.4)</td>
</tr>
<tr>
<td>Alternative measures of neighborhood characteristics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Including block and block group measures (N = 27,548)</td>
<td>36.0</td>
<td>19.8</td>
</tr>
<tr>
<td></td>
<td>(7.8)</td>
<td>(5.7)</td>
</tr>
<tr>
<td>C. Including block and alternative block group measures (N = 27,548)</td>
<td>33.7</td>
<td>23.8</td>
</tr>
<tr>
<td></td>
<td>(7.3)</td>
<td>(5.6)</td>
</tr>
<tr>
<td>Other robustness checks:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Dropping top-coded houses (N = 26,579)</td>
<td>86.6</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td>(9.9)</td>
<td>(6.6)</td>
</tr>
<tr>
<td>E. Using census-reported house value (N = 15,139)</td>
<td>64,891</td>
<td>14,874</td>
</tr>
<tr>
<td></td>
<td>(7,474)</td>
<td>(3,197)</td>
</tr>
<tr>
<td>F. Using prices from transactions sample (N = 10,171)</td>
<td>34,262</td>
<td>12,210</td>
</tr>
<tr>
<td></td>
<td>(4,958)</td>
<td>(3,108)</td>
</tr>
</tbody>
</table>

Note.—The dependent variable in specifications A–D is the monthly user cost of housing, which equals monthly rent for renter-occupied units and a monthly user cost for owner-occupied housing, calculated as described in the text; the dependent variable in specification E is the market value of the house self-reported in the census; the dependent variable in specification F is the transaction price reported in our transactions data set. Specifications A–E are based on our census sample and include controls for whether the house is owner-occupied, the number of rooms, year built (1980s, 1960–79, pre-1960), elevation, population density, crime, and land use (% industrial, % residential, % commercial, % open space, % other) in 1-, 2-, and 3-mile rings around each location. Specification F is based on our transactions data set and includes the same controls as in the other specifications along with additional controls for square footage and lot size. Standard errors corrected for clustering at the school level are reported in parentheses.
Heterogeneity and MWTP

Coefficients on hedonic price regressions represent MWTP of *marginal* consumer

If consumers are heterogeneous then coefficients on a given attribute may represent MWTP of consumer who most values that attribute, not mean MWTP

BFM attempt to back out mean MWTP by using a model to first estimate heterogeneity of location choices
Fig. 5.—Demand for a view of the Golden Gate Bridge

In general, the equilibrium price of a view is set by \(p^* \) the household on the margin of purchasing a house with a view and will be a function of both its supply and the distribution of preferences.\(^{32}\)

\(^{32}\) See Epple (1987) and Ekeland et al. (2004) for illuminating discussions.
Model of Residential Sorting

Household i chooses house h to maximize indirect utility:

$$\max_h V^i_h = \alpha^i_X X_h - \alpha^i_p p_h - \alpha^i_d d^i_h + \theta_{bh} + \xi_h + \epsilon^i_h$$

(2)

X_h represents vector of house characteristics (age, size) and neighborhood characteristics (demographics, crime)

p_h is price of house, d_h is distance from house h to work location of household i

θ_{bh} are boundary FE, equal to one if house h is within given distance of boundary b

ξ_h is unobserved characteristic of house h affects everyone equally; ϵ^i_h is EV Type 1 i.i.d. error
Preferences vary with household observables

\[
\max_h V_h^i = \alpha^i_X X_h - \alpha^i_p p_h - \alpha^i_d d_h^i + \theta_{bh} + \xi_h + \epsilon_h^i \tag{2}
\]

Each coefficient on all characteristics of vector \(X_h\), price \(p_h\), and distance \(d_h\) allowed to vary with household characteristics (ex: race, education)

Specifically, for each characteristic \(j\) and household characteristics \(Z\) they allow:

\[
\alpha_j^i = \alpha_{0j} + \sum_{k=1}^{K} \alpha_{kj} z_k^i \tag{3}
\]
Estimation

\[V_h^i = \delta_h + \lambda_h^i + \epsilon_h \]

\[\delta_h = \alpha_0X_h - \alpha_0p_h + \theta_{bh} + \xi_h \]

\[\lambda_h^i = \left(\sum_{k=1}^{K} \alpha_{kx}z_k^i \right) X_h - \left(\sum_{k=1}^{K} \alpha_{kp}z_k^i \right) p_h - \left(\sum_{k=1}^{K} \alpha_{kd}z_k^i \right) d_h \]

\[P_h^i = \frac{\exp(\delta_h + \lambda_h^i)}{\sum_k \exp(\delta_k + \lambda_k^i)} \]

Two step estimation: first estimate 7) then estimate 5) with IV.
Mean utility

Variable δ_h represents mean utility to all individuals of house h; it was estimated by first conditioning on individual observables. BFM show that by re-arranging eq (5) it can yield a hedonic that gives mean MWTP:

$$p_h + \frac{1}{\alpha_0 p} \delta_h = \frac{\alpha_0 X}{\alpha_0 p} X_h + \frac{1}{\alpha_0 p} \theta_{bh} + \frac{1}{\alpha_0 p} \xi_h$$

(10)

By estimating 10) coefficients represent mean MWTP across all different groups (population estimate).

Notice that if consumers are homogeneous then δ_h is constant for all h; this implies that eq (10) is just a simple hedonic
How to estimate first step?

\[P_h^i = \frac{\exp(\delta_h + \lambda_h^i)}{\sum_k \exp(\delta_k + \lambda_k^i)} \] \hspace{1cm} (7)

Basic Procedure:

1. make arbitrary guess for all \(\delta_h \) (all \(\delta_h = 0 \))
2. estimate \(\lambda_h^i \) terms with MLE; this is a logit model where variables are interaction terms
3. given estimates of \(\lambda_h^i \), estimate \(\delta_h \) using contraction mapping; the mapping is \(\delta_h^{t+1} = \delta_h^t - \ln(\sum_i \hat{P}_h^i) \)
4. Re-estimate \(\lambda_h^i \) terms, then new vector of \(\delta_h \)
5. Repeat process until finding a stable \(\delta_h \)
Second step

\[\delta_h = \alpha_0 X_h - \alpha_0 p h + \theta_{bh} + \xi_h \] (5)

In second step, authors regress \(\delta_h \) estimates on covariates.

Question: why bother with two step estimation? Why not just estimate interaction parameters only and then take mean coefficients to find average WTP?

Answer: by separating into two steps we can deal with endogeneity using IV; using instruments directly in a logit model is very difficult.

Where is the endogeneity in eq (5)?
Identification

\[
\delta_h = \alpha_0 X_h - \alpha_0 \rho_h + \theta_{bh} + \xi_h \quad (5)
\]

School quality, neighborhood demographics, and housing price may all be endogenous.

As discussed earlier, school quality may be positively correlated with unobserved neighborhood quality; same with demographic characteristics.

Authors assume that boundary fixed effects and demographic controls are sufficient to control for endogeneity in \(X_h\) (remember assumption is that demographic sorting occurs because of observable test scores).

Lastly, if the model is correct, housing price *must* be endogenous: higher values of \(\xi_h\) increase utility of house \(h\) and raise price.
Instrumenting for Housing Price

Basic idea: use “competing products” as instruments

IO example: instrument for price of a model of car using a measure of how many close competitors there are to that model

Idea: more competitors should lower price of car (relevance) but do not affect utility of owning that car (exclusion restriction)

In BFM: instrument for price of house h using variables that describe housing characteristics more than three miles away (characteristics of neighboring houses could affect utility directly)

Then use their model to strengthen instrument (next slide)
Instrumenting for Housing Price, part 2

\[\delta_h = \alpha_0 X_h - \alpha_0 p_h + \theta_{bh} + \xi_h \]

(5)

Distant houses gives an estimate for \(\alpha_0 p \), they then take this estimate and predict market clearing house prices with only exogenous characteristics of houses (ex: age) and neighborhoods (lakes, topography)

\[P^i_h = \frac{\exp(\beta \times X_{exog}^h - \alpha_0 p_h)}{\sum_k \exp(\beta \times X_{exog}^k - \alpha_0 p_k)} \]

(NS1)

\[p_{h}^{t+1} = p_{h}^t + \ln(\sum_i \hat{P}_h^i) \]

(NS2)

Cool idea, see NBER paper for details
Discussion of Average Willingness to Pay Results

Find that average willingness to pay for school quality estimated using sorting model is very close to marginal willingness to pay coefficient from basic hedonic

Authors argue that this is because school quality is widely distributed

However, find that estimates for average willingness to pay for black neighbors is substantially more negative than hedonic estimates

Interpret this as racial preferences (discrimination) of non-marginal white residents (live in mostly white neighborhoods); MWTP is picking up residents who live in mixed neighborhoods and have different preferences
Motivation

Hedonic Estimates

Sorting Model

Estimation

Results from Sorting Model

MWTP Heterogeneity for Continuous Good

Fig. 5.—Demand for a view of the Golden Gate Bridge

Fig. 6.—Demand for school quality

taste for a view, as indicated by , if, on the other hand, a view were widely available, the price of the view would reflect the MWTP of someone much lower in the taste distribution, as indicated by , for example. In general, the equilibrium price of a view is set by the household on the margin of purchasing a house with a view and will be a function of both its supply and the distribution of preferences.32

Fig. 6.—Demand for school quality
Estimates of Average Willingness to Pay

TABLE 7
Delta Regressions: Implied Mean Willingness to Pay
Sample: Within 0.20 Mile of Boundary (N = 27,458)

<table>
<thead>
<tr>
<th>Boundary fixed effects included</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Excluding Neighborhood Sociodemographic Characteristics</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Average test score (in standard deviations)</td>
<td>97.3</td>
<td>40.8</td>
</tr>
<tr>
<td></td>
<td>(14.0)</td>
<td>(5.5)</td>
</tr>
<tr>
<td>B. Including Neighborhood Sociodemographic Characteristics</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Average test score (in standard deviations)</td>
<td>18.0</td>
<td>19.7</td>
</tr>
<tr>
<td></td>
<td>(8.3)</td>
<td>(7.4)</td>
</tr>
<tr>
<td>% block group black</td>
<td>−404.8</td>
<td>−104.8</td>
</tr>
<tr>
<td></td>
<td>(41.4)</td>
<td>(36.9)</td>
</tr>
<tr>
<td>% census block group Hispanic</td>
<td>−88.4</td>
<td>−3.5</td>
</tr>
<tr>
<td>% block group with college degree or more</td>
<td>183.5</td>
<td>104.6</td>
</tr>
<tr>
<td></td>
<td>(26.4)</td>
<td>(31.8)</td>
</tr>
<tr>
<td>Average block group income (/10,000)</td>
<td>30.7</td>
<td>36.3</td>
</tr>
<tr>
<td></td>
<td>(3.7)</td>
<td>(6.6)</td>
</tr>
</tbody>
</table>

Note.—All regressions shown in the table also include controls for whether the house is owner-occupied, the number of rooms, year built (1980s, 1960–79, pre-1960), elevation, population density, crime, and land use (% industrial, % residential, % commercial, % open space, % other) in 1-, 2-, and 3-mile rings around each location. The dependent variable is the monthly user cost of housing, which equals monthly rent for renter-occupied units and a monthly user cost for owner-occupied housing, calculated as described in the text. Standard errors corrected for clustering at the school level are reported in parentheses.
Discussion of Heterogeneity

Lastly, authors look at MWTP by different groups (different $\alpha^* z_k$ estimates)

Find lots of sorting preferences

Find that educated households prefer to live with other educated households (pay additional $32 per month); less-educated prefer to live with other less-educated (required additional $26 to live with more educated)

Similar results by race
Motivation

Hedonic Estimates

Sorting Model

Estimation

Results from Sorting Model

Estimates of Heterogeneity in MWTP

Table 8: Heterogeneity in Marginal Willingness to Pay for Average Test Score and Neighborhood Sociodemographic Characteristics

<table>
<thead>
<tr>
<th>Average Test Score +1 SD</th>
<th>Neighborhood Sociodemographics</th>
<th>Block Group Average Income +$10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+10% Black vs. White +10% College-Educated</td>
<td></td>
</tr>
<tr>
<td>Mean MWTP</td>
<td>19.69 (7.41)</td>
<td>10.50 (3.69)</td>
</tr>
<tr>
<td>Household income (+$10,000)</td>
<td>1.38 (.33)</td>
<td>-1.23 (.37)</td>
</tr>
<tr>
<td>Children under 18 vs. no children</td>
<td>7.41 (3.58)</td>
<td>11.86 (3.03)</td>
</tr>
<tr>
<td>Black vs. white</td>
<td>-14.31 (7.36)</td>
<td>98.34 (3.93)</td>
</tr>
<tr>
<td>College degree or more vs. some college or less</td>
<td>13.03 (3.57)</td>
<td>9.19 (3.14)</td>
</tr>
</tbody>
</table>

Note.—The first row of the table reports the mean marginal willingness to pay for the change reported in the column heading. The remaining rows report the difference in willingness to pay associated with the change listed in the row heading, holding all other factors equal. The full heterogeneous choice model includes 135 interactions between nine household characteristics and 15 housing and neighborhood characteristics. The included household characteristics are household income, the presence of children under 18, and the race/ethnicity (Asian, black, Hispanic, white), educational attainment (some college, college degree or more), work status, and age of the household head. The housing and neighborhood characteristics are the monthly user cost of housing, distance to work, average test score, whether the house is owner-occupied, number of rooms, year built (1980s, 1960–79, pre-1960), elevation, population density, crime, and the racial composition (% Asian, % black, % Hispanic, % white) and average education (% college degree) and household income for the corresponding census block group. Standard errors are reported in parentheses.
References

