Introduction to Urban Economics;
The Monocentric City Model

Nathan Schiff
Shanghai University of Finance and Economics

Graduate Urban Economics, Lecture 1
February 22, 2016
Introduction

One of the biggest questions in urban economics—and urban studies generally—is what forces drive the spatial distribution of a city’s population

1. Are there any general distribution patterns that seem to hold across cities and countries?
2. What is the relationship between housing prices, land rents, and density?
3. What determines which types of people (ex: income, job type) live where?
4. Can we predict the effect of policy changes?

To get a better idea of these questions let’s look at some maps

Source: Gilles Duranton November 7, 2015 presentation and Alain Bertaud, Feb 2002 presentation
Land Price Map, Source: Duranton

Land prices in Berlin

Source: Ahlfeldt, Redding, Sturm, and Wolf (2014)
Land Use Maps, Source: Duranton

Land use in Paris

- Multi-family residential
- Single-family residential
- Commercial
- Transport
- Open space
Motivation and Introduction

Residents Housing Sector Equilibrium Comparative Statics Some Empirical Evidence Concluding Thoughts

Land Use Maps, Source: Duranton

Land use in Paris

Share of built-up land by use

Distance to Notre Dame (km.)

Commercial

Single–family residential

Multi–family residential
3D Density Map, Source: Bertaud

Distribution of population in Abidjan

ABIDJAN - POPULATION DENSITIES
3D Density Map, Source: Bertaud

Distribution of population in Hong Kong
3D Density Map, Source: Bertaud

Spatial distribution of population in 7 major metropolis represented at the same scale
Common Patterns

There are very different densities across these cities–do you see any common patterns?

One thing we generally see is a pattern of declining density radiating from one center, or sometimes multiple centers.

From the Berlin map we saw a similar pattern with land prices.

What are the main forces that could generate this pattern? What happens when these change?

Specific questions we could ask:

1. What should happen to the spatial distribution of population as Shanghai builds more subway lines extending into far districts?

2. What should happen to Shanghai residents’ quality of life as transportation infrastructure improves? Does it depend on the hukou system?
Monocentric City Model: goals and main idea

The goal of the model is to explain the spatial distribution of population in a city.

Main mechanism is the relationship between commuting costs, housing price, and housing consumption.

We are interested in deriving a set of gradients and comparative statics.

Results:

1. Housing prices decrease with distance from the Central Business District (CBD)
2. Housing consumption increases with distance from CBD
3. Density and capital-to-land ratio decrease with distance from CBD
Model Framework

- All residents are identical, consume housing and numeraire good
- Price of numeraire good does not vary with location but housing price can
- All jobs are located in center of city (CBD), residents commute with positive transportation cost
- Land is owned by absentee landlords (not in city), developers rent land and build housing in perfectly competitive market with CRS production
- In equilibrium: all residents have same utility, everyone must have housing in city

In my slides I will mostly use Brueckner’s notation with matching equation labels.
Residents Maximization Problem

- Consumers have utility $v(z, q)$ over numeraire z and housing q
- Commuting cost is $\tau \cdot x$, where x is distance from CBD
- Given wage y and housing price $p(x)$, budget constraint:
 $$z + p(x) \cdot q(x) + \tau \cdot x = y$$
- All residents have equilibrium utility u

Resident utility maximization problem is thus:

$$\max_q v(y - \tau \cdot x - p(x)q(x), q) = u \quad (1)$$
Residents’ Optimal Consumption

$$\max_q v(y - \tau \ast x - p(x)q(x), q) = u$$ \quad (1)$$

This maximization problem leads to two conditions: 1) optimization 2) equal utility

Optimization implies the MRS is equal to ratio of prices:

$$\frac{\partial v(y - \tau \ast x - p(x)q(x), q)}{\partial q} = \frac{\partial v(y - \tau \ast x - p(x)q(x), q)}{\partial z} = \frac{p}{1}$$ \quad (2)$$

The equal utility condition implies:

$$v(y - \tau \ast x - p(x)q(x), q) = u$$ \quad (3)$$
Deriving the Price Gradient

\[
\frac{\partial v(y - \tau \ast x - p(x)q(x), q)}{\partial q} \frac{\partial q}{\partial z} = \frac{p}{1} \tag{2}
\]

\[
v(y - \tau \ast x - p(x)q(x), q) = u \tag{3}
\]

If we totally differentiate eq. 3 wrt \(x\):

\[
\frac{\partial v}{\partial z} * \left(-\tau - \frac{\partial p(x)}{\partial x} q(x) - p(x) \frac{\partial q(x)}{\partial x}\right) + \frac{\partial v}{\partial q} * \frac{\partial q(x)}{\partial x} = 0 \tag{4}
\]

Plugging eq 2 into 4 (envelope theorem) yields:

\[
\frac{\partial p(x)}{\partial x} = \frac{-\tau}{q(x)} \tag{5}
\]
Price Gradient: Alonso-Muth Condition

\[
\frac{\partial p(x)}{\partial x} = \frac{-\tau}{q(x)}
\] \hspace{1cm} (5)

Price declines with distance from the center as a function of transportation costs and housing.

If we forced all residents to consume equal amounts of housing \(q(x) = \bar{q} \) then the gradient (slope wrt distance) is constant: prices must decrease linearly so that all consumers have equal income (since they have equal consumption).

If housing increases with dist from CBD gradient is convex: consumers substitute cheaper housing consumption for numeraire consumption, so prices don’t have to decline as quickly to compensate consumers.
Alternative Derivation of Alonso-Muth

This same condition can be derived from the expenditure minimization problem

$$\min_{q,z} z + p(x) \star q(x), \text{s.t. } v(z, q) = u$$ \hspace{1cm} (1b)$$

This gives us the Hicksian demand functions $q(p, u), z(p, u)$

We then look for the price $p(x)$ where all consumers have utility u and consumers spend their budget:

$$z(p, u) + p(x)q(p, u) + \tau \star x = y$$

This price function $p(x)$ can be interpreted as the maximum that consumers can pay for housing at location x such that utility is u

Urban economists call this the “bid-rent function”; its slope is the Alonso-Muth condition
Housing Consumption Gradient

In this model housing price $p(x)$ adjusts so that all residents have equal utility.

Therefore we can work with either Marshallian housing demand $q(p(u), y, x)$ or Hicksian demand $q(p, u, x)$.

Gradient of Hicksian housing demand is:

$$\frac{dq(p,u,x)}{dx} = \frac{\partial q}{\partial p} * \frac{\partial p}{\partial x} > 0$$

Therefore, we know that housing consumption is *increasing* with distance; the housing price is cheaper so consumers substitute towards housing.
Housing Production

The housing construction industry is perfectly competitive with a *concave* CRS production function.

Input to construction is land L and capital K: $H(K, L)$

The important part of concavity is that $H_{KK} < 0$; building higher is more expensive.

The price of capital is i, price of land at x is $r(x)$.

It will turn out to be easier to work with the capital-to-land ratio: $S = K/L$

Then, because we assume CRS we can write $L \times \frac{H(K,L)}{L} = L \times H(S, 1)$

Define $h(S) \equiv H(S, 1)$ as housing-per-unit-land.

Profit: $\Pi(x) = L \times (p(x) \times h(S) - i \times S - r(x))$
Firm optimization and market structure

With CRS and free entry we have a perfectly competitive market with construction firms earning zero profit.

Similar to the utility maximization problem, this gives two conditions: 1) FOC for optimal S and 2) zero-profit equation

\[p(x) \ast \frac{\partial h(S)}{\partial S} = i \] \hspace{1cm} (11)

\[p(x) \ast h(S) - i \ast S(x) - r(x) = 0 \] \hspace{1cm} (12)

Totally differentiating these conditions will allow us to derive the land-rent gradient and capital-to-land ratio gradient.
Deriving land rent and capital-to-land gradient

\[p(x) \cdot \frac{\partial h(S)}{\partial S} = i \] \hspace{1cm} (11)

\[p(x) \cdot h(S) - i \cdot S(x) - r(x) = 0 \] \hspace{1cm} (12)

Define \(\phi \) as the set of parameters \(\phi = x, \tau, y, u \)

Totally differentiating gives:

\[\frac{\partial p}{\partial \phi} \cdot \frac{\partial h}{\partial S} + p \cdot \frac{\partial^2 h}{(\partial S)^2} \cdot \frac{\partial S}{\partial \phi} = 0 \] \hspace{1cm} (13)

\[(p \cdot \frac{\partial h}{\partial S} - i) \cdot \frac{\partial S}{\partial \phi} + \frac{\partial p}{\partial \phi} h = \frac{\partial r}{\partial \phi} \] \hspace{1cm} (14)
Finally, by inserting the FOC (11) into (14) we get:

$$\frac{\partial r}{\partial \phi} = h^* \frac{\partial p}{\partial \phi}$$ \hspace{1cm} (15)

Re-arranging (13) gives:

$$\frac{\partial S}{\partial \phi} = - \frac{\partial h}{\partial S} * (p^* \frac{\partial^2 h}{(\partial S)^2})^{-1} * \frac{\partial p}{\partial \phi}$$ \hspace{1cm} (16)

Our earlier concavity assumption implies that $\frac{\partial^2 h}{(\partial S)^2} < 0$

This gives us:

$$\frac{\partial r}{\partial x} < 0, \text{ and } \frac{\partial S}{\partial x} < 0$$ \hspace{1cm} (17)
Population Density

Assume every person lives in a separate house

Then the population at x is the total amount of housing at x divided by the per-person consumption of housing:

$$N(x) = \frac{H(x)}{q(x)}$$

The population density (pop/land) is thus:

$$D(x) = \frac{H(x)}{(L \cdot q(x))} = \frac{h(s)}{q(x)}$$

Differentiating:

$$\frac{\partial D(x)}{\partial x} = \frac{\partial h(S)}{\partial S} \cdot \frac{\partial S(x)}{\partial x} \cdot \frac{1}{q(x)} - \frac{h(S)}{q(x)} \cdot \frac{dq}{dx} < 0$$

Density decreases for *two* reasons: 1) capital-to-land ratio declines 2) per-person housing consumption increases
Summary of Results

\[\frac{\partial p}{\partial x} = \frac{-\tau}{q(x)} < 0 \quad (r1) \]

\[\frac{dq}{dx} = \frac{\partial q(p, u)}{\partial x} \ast \frac{\partial p}{\partial x} > 0 \quad (r2) \]

\[\frac{\partial r}{\partial x} = h(S) \ast \frac{\partial p}{\partial x} < 0 \quad (r3) \]

\[\frac{\partial S}{\partial x} = -\frac{\partial h}{\partial S} \ast (p \ast \frac{\partial^2 h}{(\partial S)^2})^{-1} \ast \frac{\partial p}{\partial x} < 0 \quad (r4) \]

\[\frac{\partial D(x)}{\partial x} = \frac{\partial h(S)}{\partial S} \ast \frac{\partial S(x)}{\partial x} \ast \frac{1}{q(x)} - \frac{h(S)}{q(x)} \ast \frac{dq}{dx} < 0 \quad (r5) \]
Comparative Statics

What happens to spatial distribution as income, transportation cost, population, agricultural land rent, or utility change?

Comparative statics of the model depend upon our assumption about migration

Closed City Model: no migration, population is exogenous and equilibrium utility u is determined by the model

Open City Model: free migration no moving frictions, implies “spatial equilibrium condition” that utility must be equal in every city; population is endogenous and adjusts to ensure (exogenous) equal utility u
Equilibrium Conditions

To cut down on algebra and still maintain intuition we assume:
1) All land can be developed \(L(x) = 1 \), and 2) City is on a line instead of area of circle (1 dimension instead of 2)

Two equilibrium conditions we use to close model:

1) Residents out-bid farmers for use of land, which means city ends at some \(\bar{x} \) where land rent is equal to agricultural land rent

\[
r(\bar{x}, y, \tau, u) = r_A \tag{18}
\]

2) Everyone (population \(N \)) is housed within boundary of city \(\bar{x} \)

\[
\int_{0}^{\bar{x}} D(x)dx = N \tag{19}
\]

Note: equation 19 is simpler than in Brueckner due to above assumptions
Land Rent at CBD

Following Duranton and Puga (2015) we use:

\[d1) \frac{\partial p(x)}{\partial x} = -\frac{\tau}{q(x)} \quad d2) \frac{\partial r(x)}{\partial x} = h(S) \ast \frac{\partial p}{\partial x} \]

Then density is:

\[D(x) = -\frac{1}{\tau} \ast \frac{\partial r}{\partial x} \]

This is a very useful way to write density because then:

\[\int_0^{\bar{x}} D(x)dx = \int_0^{\bar{x}} = -\frac{1}{\tau} \ast \frac{\partial R}{\partial x} = \frac{R(\bar{x}) - R(0)}{-\tau} = N \quad (1) \]

Land rent differential—rent at CBD vs fringe—is thus proportional to population and transportation cost:

\[r(0) - r_A = \tau \ast N \]
Solving Closed City Model

From the developer’s problem we can write price as a function of land rent:

\[p(x) = \frac{IS(r) + r}{\hat{h}(S(r))} = C(i, r) \]

Zero-profit condition means unit price of housing equals unit cost of housing \(C(r) \), then:

\[p(0) = C(i, r(0)) = C(i, r_A + \tau N) \]

Then, since utility is equal at all locations, \(\nu(x) = \nu(p(0), y) = u \)

With \(u \) we can then solve for \(p(x) \) function, last task is to find \(x \).

We know price at fringe must be equal to construction cost at fringe, can invert to find \(x \):

\[p(x) = C(r(x)) = C(r_A) \]
Closed City: Increase in Agricultural Rent

What happens to u, \bar{x}, price and density gradients?

1. Equilibrium utility decreases
2. Fringe contracts $\bar{x}_1 < \bar{x}_0$
3. Price gradient *shifts up* and steeper
4. Density rises everywhere

Basically cuts city at new r_A, everyone must live in smaller area
Example: Closed City, Agricultural Rent Increase

The graph illustrates the relationship between the price of housing (P) and the distance from the CBD (x) in a closed city model with agricultural rent increase. The graph shows two curves labeled rA_0 and rA_1, representing different scenarios or parameters.

The x-axis represents the distance from the CBD, ranging from 0.5 to 3.5, while the y-axis represents the price P(x), ranging from 50 to 10.

The curves show how the price decreases as the distance from the CBD increases, reflecting the economic principle that prices tend to decrease with distance from central areas in urban settings.
Example: Closed City, Agricultural Rent Increase

Housing Consumption $q(x)$

Dist from CBD x

H_xL

r_{A_0}

r_{A_1}
Example: Closed City, Agricultural Rent Increase
Closed City: Population Increase

What happens to u, \bar{x}, price and density gradients?

1. Equilibrium utility decreases
2. Fringe expands $\bar{x}_1 > \bar{x}_0$
3. Price gradient *shifts up* and steeper
4. Density rises everywhere

City expands geographically but not enough so that density at x is constant
Example: Closed City, Population Increase

Price $P(x)$

Dist from CBD (x)

N_0, N_1
Example: Closed City, Population Increase

Housing Consumption $q(x)$

Dist from CBD x

N_0

N_1
Example: Closed City, Population Increase

![Graph showing density over distance from CBD (x)](image)

- N_0 and N_1 represent different scenarios or population densities.

- The graph illustrates how density decreases as the distance from the CBD increases.
Closed City: Income Increase

Income and transportation cost changes are complicated because there are both indirect effects through utility (same as pop and fringe rent), but also direct effects:

\[
\frac{dp}{dy} = \frac{\partial p}{\partial u} \ast \frac{\partial u}{\partial y} + \frac{\partial p}{\partial y}
\]

1. Equilibrium utility increases
2. Fringe expands \(\bar{x}_1 > \bar{x}_0 \)
3. Price gradient rotates; for this functional form it turns out to rotate at center, but not always true
4. Density gradient rotates; note that it drops at center just enough so that price is same despite increase in housing consumption (same amount of housing, fewer people)
5. For this functional form housing consumption gradient also rotates; tradeoff between housing and numeraire consumption (technical detail)

City expands geographically, most people consume more housing, live further away, increases density away from CBD
Closed City, Income Increase, Price Gradient
Closed City, Income Increase, Housing Gradient

Housing Consumption $q(x)$

Dist from CBD x

Housing Consumption $q_H^x_L$
Closed City, Income Increase, Density Gradient
Closed City: Decrease in Transportation Cost

What happens to u, \bar{x}, price and density gradients?

1. Equilibrium utility increases
2. Fringe expands $\bar{x}_1 > \bar{x}_0$
3. Price gradient *rotates*: for $x < x^*$ $p(x)$ declines, $x > x^*$ $p(x)$ increases
4. Where price falls density falls, density rises where price rises

Basically more distant locations become more attractive, decreasing demand for central locations
Example: Closed City, Transportation Cost Decrease
Example: Closed City, Transportation Cost Decrease
Example: Closed City, Transportation Cost Decrease
Open City Comparative Statics

Open city comparative statics are easier because utility is fixed due to population flow.

We can therefore compute comparative statics directly from the variable equations, without worrying about the indirect effect of utility.

For example: decrease in transportation cost must raise prices (to ensure utility doesn’t change), expand the fringe, decrease housing consumption, and thus lead to higher density and a higher overall population.

Can also interpret open city comparative statics as “short-run” and “long-run”:

First, the parameter change induces the closed city equilibrium, which has a different utility.

Then, population flows in or out to restore original utility level, with resulting closed-city effect of population change (long-run).
Ex: OPEN City, Transportation Cost Decrease
Ex: OPEN City, Transportation Cost Decrease

Density

\[\tau_0 \]

\[\tau_1 \]

Open \(\tau_1 \)
Some empirical gradients

The following are density estimates from various cities collected by Bertaud and Malpezzi.

The data is not public, CBD definition is subjective, year is unclear; still quite informative

Empirical Density Gradients
Empirical Density Gradients

![Graphs of density gradients for Seoul, Seoul + New Town, Shanghai, Singapore, Sofia, and St. Petersburg. The graphs show the relationship between distance (in km) and density (persons per hectare).](image-url)
Empirical Density Gradients

Chicago

Cracow

Curitiba

Guangzhou

Hongkong

Houston
Concluding: Weaknesses of the Model

Elegant analytical framework has a cost: some unrealistic and non-trivial assumptions

1. Everyone commutes to job in CBD; many cities are polycentric (multiple job centers)

2. Housing stock is perfectly flexible; in fact, housing stock is quite durable and this durability is important

3. No zoning or regulations; empirical work argues these frictions can be significant

4. Residents are identical (this can be relaxed somewhat—different bid rent curves by type)

Nonetheless, a very important and flexible model, continues to be widely used

Next Class: Read Brueckner article and Baum-Snow et. al (available on my website)
References for this Lecture

This lecture is based on the following references: